Closing Tue:
10.1/13.1, 10.2/13.2

Closing Thu:
10.3

Closing Next Tue: 13.3(part 1)
Midterm 1 is Tuesday, Feb. 2 it covers
12.1-12.6, 10.1-10.3, 13.1-13.2 and 13.3(part 1)

10.2/13.2 Calculus on Parametric Curves

(Continued)
Recall:
For 2D

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(f^{\prime}(x)\right)}{d x / d t}
$$

Entry Task:
$\mathrm{x}=\mathrm{t}, \mathrm{y}=2-\mathrm{t}^{2}$ (shown below)
Find $\overrightarrow{\boldsymbol{r}}(1)$ and $\overrightarrow{\boldsymbol{r}}^{\prime}(1)$

For 3D

$$
\begin{aligned}
\overrightarrow{\boldsymbol{r}}^{\prime}(t) & =\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle \\
& =\text { tangent (velocity) vector }
\end{aligned}
$$

$\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|=$ speed

Today:

Arc Length followed by polar coordinates.

Distance Traveled on a Curve

The dist. traveled from $t=a$ to $t=b$ is given by

$$
\begin{gathered}
\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t \\
=\int_{a}^{b}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t
\end{gathered}
$$

(Note: 2D is same without the $z^{\prime}(t)$).
If the curve is "traversed once" we call this arc length.

The distance/arc length from 0 to t is often written as

$$
s(t)=\int_{0}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(u)\right| d u=\text { distance }
$$

We call this the distance/arc length function.
Note:

$$
\frac{d s}{d t}=\left|\stackrel{\rightharpoonup}{\boldsymbol{r}}^{\prime}(t)\right|=\text { speed }
$$

Example: $\mathrm{x}=\cos (\mathrm{t}), \mathrm{y}=\sin (\mathrm{t})$
(a) Find the distance traveled by this object from $t=0$ to $t=6 \pi$.
(b) Find the arc length of the path over which this object is traveling.

Example: $\mathrm{x}=3+2 \mathrm{t}, \mathrm{y}=4-5 \mathrm{t}$
(a) Find the arc length function from 0 to t.
(b) Reparameterize in terms of arc length.

